Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414818

RESUMO

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Assuntos
Gorduras na Dieta , Ilhotas Pancreáticas , Leptina , Masculino , Camundongos , Animais , Glucagon , Sacarose/efeitos adversos , Óleos de Peixe/farmacologia , Peptídeo C , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Insulina , Glucose , Peptídeo 1 Semelhante ao Glucagon/metabolismo
2.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203742

RESUMO

Achieving glycemic control and sustaining functional pancreatic ß-cell activity remains an unmet medical need in the treatment of type 2 diabetes mellitus (T2DM). Glucokinase activators (GKAs) constitute a class of anti-diabetic drugs designed to regulate blood sugar levels and enhance ß-cell function in patients with diabetes. A significant progression in GKA development is underway to address the limitations of earlier generations. Dorzagliatin, a dual-acting GKA, targets both the liver and pancreas and has successfully completed two phase III trials, demonstrating favorable results in diabetes treatment. The hepato-selective GKA, TTP399, emerges as a strong contender, displaying clinically noteworthy outcomes with minimal adverse effects. This paper seeks to review the current literature, delve into the mechanisms of action of these new-generation GKAs, and assess their efficacy and safety in treating T2DM based on published preclinical studies and recent clinical trials.


Assuntos
Diabetes Mellitus Tipo 2 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucoquinase , Pâncreas , Controle Glicêmico
3.
Biomedicines ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255314

RESUMO

Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.

4.
Stem Cells Transl Med ; 13(2): 101-106, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950618

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease associated with complications that reduce the quality of life of affected individuals and their families. The therapeutic options for T1D are limited to insulin therapy and islet transplantation; these options are not focused on preserving ß-cell function and endogenous insulin. Despite the promising outcomes observed in current clinical trials involving allogeneic Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) infusion for the management of T1D, the precise underlying mechanism of action remains to be elucidated. In this correspondence, we propose prospective mechanisms of action of WJ-MSCs that may be mediating their observed capability to preserve ß-cell function and prevent T1D progression and provide recommendations for further investigations in clinical settings. We also highlight the efficacy of WJ-MSCs for therapeutic applications in comparison to other adult MSCs. Finally, we recommend the participation of muti-centers governed by international organizations to implement guidelines for the safe practice of cell therapy and patients' welfare.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Diabetes Mellitus Tipo 1/terapia , Qualidade de Vida , Cordão Umbilical , Insulina , Diferenciação Celular , Células Cultivadas , Proliferação de Células/fisiologia
5.
Front Pharmacol ; 14: 1322148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089047

RESUMO

Verapamil is a well-known drug used for treating angina and hypertension. Emerging data from current clinical trials suggest that this calcium channel blocker has a potential benefit for pancreatic ß-cells through the elevation and sustenance of C-peptide levels in patients with diabetes mellitus (DM). This is intriguing, given the fact that the current therapeutic options for DM are still limited to using insulin and incretins which, in fact, fail to address the underlying pathology of ß-cell destruction and loss. Moreover, verapamil is widely available as an FDA-approved, cost-effective drug, supported also by its substantial efficacy and safety. However, the molecular mechanisms underlying the ß-cell protective potentials of verapamil are yet to be fully elucidated. Although, verapamil reduces the expression of thioredoxin-interacting protein (TXNIP), a molecule which is involved in ß-cell apoptosis and glucotoxicity-induced ß-cell death, other signaling pathways are also modulated by verapamil. In this review, we revisit the historical avenues that lead to verapamil as a potential therapeutic agent for DM. Importantly, this review provides an update on the current known mechanisms of action of verapamil and also allude to the plausible mechanisms that could be implicated in its ß-cell protective effects, based on our own research findings.

6.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894865

RESUMO

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Estresse do Retículo Endoplasmático , Glucose , Inflamação , NF-kappa B/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Cell Dev Biol ; 11: 1211217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440921

RESUMO

Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 µm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.

8.
iScience ; 26(7): 107145, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416456

RESUMO

Foamy and inflammatory macrophages play pathogenic roles in metabolic disorders. However, the mechanisms that promote foamy and inflammatory macrophage phenotypes under acute-high-fat feeding (AHFF) remain elusive. Herein, we investigated the role of acyl-CoA synthetase-1 (ACSL1) in favoring the foamy/inflammatory phenotype of monocytes/macrophages upon short-term exposure to palmitate or AHFF. Palmitate exposure induced a foamy/inflammatory phenotype in macrophages which was associated with increased ACSL1 expression. Inhibition/knockdown of ACSL1 in macrophages suppressed the foamy/inflammatory phenotype through the inhibition of the CD36-FABP4-p38-PPARδ signaling axis. ACSL1 inhibition/knockdown suppressed macrophage foaming/inflammation after palmitate stimulation by downregulating the FABP4 expression. Similar results were obtained using primary human monocytes. As expected, oral administration of ACSL1 inhibitor triacsin-C in mice before AHFF normalized the inflammatory/foamy phenotype of the circulatory monocytes by suppressing FABP4 expression. Our results reveal that targeting ACSL1 leads to the attenuation of the CD36-FABP4-p38-PPARδ signaling axis, providing a therapeutic strategy to prevent the AHFF-induced macrophage foaming and inflammation.

9.
Front Public Health ; 11: 1115333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006572

RESUMO

Introduction: Both obesity and a poor diet are considered major risk factors for triggering insulin resistance syndrome (IRS) and the development of type 2 diabetes mellitus (T2DM). Owing to the impact of low-carbohydrate diets, such as the keto diet and the Atkins diet, on weight loss in individuals with obesity, these diets have become an effective strategy for a healthy lifestyle. However, the impact of the ketogenic diet on IRS in healthy individuals of a normal weight has been less well researched. This study presents a cross-sectional observational study that aimed to investigate the effect of low carbohydrate intake in healthy individuals of a normal weight with regard to glucose homeostasis, inflammatory, and metabolic parameters. Methods: The study included 120 participants who were healthy, had a normal weight (BMI 25 kg/m2), and had no history of a major medical condition. Self-reported dietary intake and objective physical activity measured by accelerometry were tracked for 7 days. The participants were divided into three groups according to their dietary intake of carbohydrates: the low-carbohydrate (LC) group (those consuming <45% of their daily energy intake from carbohydrates), the recommended range of carbohydrate (RC) group (those consuming 45-65% of their daily energy intake from carbohydrates), and the high-carbohydrate (HC) group (those consuming more than 65% of their daily energy intake from carbohydrates). Blood samples were collected for the analysis of metabolic markers. HOMA of insulin resistance (HOMA-IR) and HOMA of ß-cell function (HOMA-ß), as well as C-peptide levels, were used for the evaluation of glucose homeostasis. Results: Low carbohydrate intake (<45% of total energy) was found to significantly correlate with dysregulated glucose homeostasis as measured by elevations in HOMA-IR, HOMA-ß% assessment, and C-peptide levels. Low carbohydrate intake was also found to be coupled with lower serum bicarbonate and serum albumin levels, with an increased anion gap indicating metabolic acidosis. The elevation in C-peptide under low carbohydrate intake was found to be positively correlated with the secretion of IRS-related inflammatory markers, including FGF2, IP-10, IL-6, IL-17A, and MDC, but negatively correlated with IL-3. Discussion: Overall, the findings of the study showed that, for the first time, low-carbohydrate intake in healthy individuals of a normal weight might lead to dysfunctional glucose homeostasis, increased metabolic acidosis, and the possibility of triggering inflammation by C-peptide elevation in plasma.


Assuntos
Acidose , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Insulina , Estudos Transversais , Peptídeo C , Carboidratos da Dieta , Glicemia/metabolismo , Obesidade
10.
Cells ; 12(7)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048092

RESUMO

Obesity is characterized by chronic low-grade inflammation. Obese people have higher levels of caveolin-1 (CAV1), a structural and functional protein present in adipose tissues (ATs). We aimed to define the inflammatory mediators that influence CAV1 gene regulation and the associated mechanisms in obesity. Using subcutaneous AT from 27 (7 lean and 20 obese) normoglycemic individuals, in vitro human adipocyte models, and in vivo mice models, we found elevated CAV1 expression in obese AT and a positive correlation between the gene expression of CAV1, tumor necrosis factor-alpha (TNF-α), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). CAV1 gene expression was associated with proinflammatory cytokines and chemokines and their cognate receptors (r ≥ 0.447, p ≤ 0.030), but not with anti-inflammatory markers. CAV1 expression was correlated with CD163, indicating a prospective role for CAV1 in the adipose inflammatory microenvironment. Unlike wild-type animals, mice lacking TNF-α exhibited reduced levels of CAV1 mRNA/proteins, which were elevated by administering exogenous TNF-α. Mechanistically, TNF-α induces CAV1 gene transcription by mediating NF-κB binding to its two regulatory elements located in the CAV1 proximal regulatory region. The interplay between CAV1 and the TNF-α signaling pathway is intriguing and has potential as a target for therapeutic interventions in obesity and metabolic syndromes.


Assuntos
Caveolina 1 , NF-kappa B , Obesidade , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
11.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497195

RESUMO

Caveolin-1 (CAV1) is implicated in the pathophysiology of diabetes and obesity. Previously, we demonstrated an association between the CAV1 rs1997623 C > A variant and metabolic syndrome (MetS). Here, we decipher the functional role of rs1997623 in CAV1 gene regulation. A cohort of 38 patients participated in this study. The quantitative MetS scores (siMS) of the participants were computed. CAV1 transcript and protein expression were tested in subcutaneous adipose tissue using RT-PCR and immunohistochemistry. Chromatin immunoprecipitation assays were performed using primary preadipocytes isolated from individuals with different CAV1 rs1997623 genotypes (AA, AC, and CC). The regulatory region flanking the variant was cloned into a luciferase reporter plasmid and expressed in human preadipocytes. Additional knockdown and overexpression assays were carried out. We show a significant correlation between siMS and CAV1 transcript levels and protein levels in human adipose tissue collected from an Arab cohort. We found that the CAV1 rs1997623 A allele generates a transcriptionally active locus and a new transcription factor binding site for early B-cell factor 1 (EBF1), which enhanced CAV1 expression. Our in vivo and in vitro combined study implicates, for the first time, EBF1 in regulating CAV1 expression in individuals harboring the rs1997623 C > A variant.


Assuntos
Caveolina 1 , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Transativadores , Humanos , Tecido Adiposo/metabolismo , Alelos , Sítios de Ligação , Caveolina 1/genética , Genótipo , Síndrome Metabólica/metabolismo , Transativadores/metabolismo
13.
Front Genet ; 13: 1034892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338969

RESUMO

Background: Animal and cell model studies have implicated CAV1 in the pathophysiology of metabolic disorders. Our previous studies demonstrated a potential association of CAV1 rs1997623 C/A variant with pediatric metabolic syndrome (MetS) in Arab children. In the present study, we evaluate whether the CAV1 variant associates with MetS Arab adults as well. The association signal is further examined for ancestry-specific variation by considering cohorts of other ethnicities. Method: The CAV1 rs1997623 was genotyped in three cohorts of Arab (n = 479), South Asian (n = 660), and South East Asian (n = 362) ethnic adults from Kuwait. MetS status of the individuals was diagnosed using the IDF criteria (presence of central obesity and at least two abnormalities out of: elevated TG, low HDL, hypertension, or T2D). The quantitative measure of MetS was calculated as siMS = 2 × WC/Height + FBG/5.6 + TG/1.7 + SBP/130-HDL/1.02 for males or HDL/1.28 for females. Allelic associations with quantitative and dichotomous MetS traits were assessed using linear and logistic regression models adjusted for age and sex. In addition, empirical p-values (P emp ) were generated using max(T) permutation procedure based on 10,000 permutations. Results: The CAV1 variant was significantly associated with MetS status (OR = 1.811 [1.25-2.61]; p-value = 0.0015; P emp = 0.0013) and with siMS (Effect size = 0.206; p-value = 0.0035; P emp = 0.0028) in the cohort of Arab individuals. The association was weak and insignificant in the South Asian and South East Asian cohorts (OR = 1.19 and 1.11; p-values = 0.25 and 0.67, respectively). Conclusion: The reported association of CAV1 rs1997623 C/A with MetS in Arab pediatric population is now demonstrated in an adult Arab cohort as well. The weak association signal seen in the Asian cohorts lead us to propose a certain extent of ethnic-specificity in CAV1 rs1997623 association with MetS.

14.
Pharmaceutics ; 14(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297581

RESUMO

BACKGROUND: Diabetes is associated with several complications, including neuropathic pain, which is difficult to manage with currently available drugs. Descending noradrenergic neurons possess antinociceptive activity; however, their involvement in diabetic neuropathic pain remains to be explored. METHODS: To infer the regulatory role of this system, we examined as a function of diabetes, the expression and localization of alpha-2A adrenoceptors (α2-AR) in the dorsal root ganglia and key regions of the central nervous system, including pons and lumbar segment of the spinal cord using qRT-PCR, Western blotting, and immunofluorescence-based techniques. RESULTS: The data revealed that presynaptic synaptosomal-associated protein-25 labeled α2-AR in the central and peripheral nervous system of streptozotocin diabetic rats was upregulated both at the mRNA and protein levels. Interestingly, the levels of postsynaptic density protein-95 labeled postsynaptic neuronal α2-AR remained unaltered as a function of diabetes. These biochemical abnormalities in the noradrenergic system of diabetic animals were associated with increased pain sensitivity as typified by the presence of thermal hyperalgesia and cold/mechanical allodynia. The pain-related behaviors were assessed using Hargreaves apparatus, cold-plate and dynamic plantar aesthesiometer. Chronically administered guanfacine, a selective α2-AR agonist, to diabetic animals downregulated the upregulation of neuronal presynaptic α2-AR and ameliorated the hyperalgesia and the cold/mechanical allodynia in these animals. CONCLUSION: Together, these findings demonstrate that guanfacine may function as a potent analgesic and highlight α2-AR, a key component of the descending neuronal autoinhibitory pathway, as a potential therapeutic target in the treatment of diabetic neuropathic pain.

15.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231033

RESUMO

Chronic low-grade inflammation induced by obesity is a central risk factor for the development of metabolic syndrome. High low-density lipoprotein cholesterol (LDL-c) induces inflammation, which is a common denominator in metabolic syndrome. IL-23 plays a significant role in the pathogenesis of meta-inflammatory diseases; however, its relationship with LDL-c remains elusive. In this cross-sectional study, we determined whether the adipose tissue IL-23 expression was associated with other inflammatory mediators in people with increased plasma LDL-c concentrations. Subcutaneous adipose tissue biopsies were collected from 60 people, sub-divided into two groups based on their plasma LDL-c concentrations (<2.9 and ≥2.9 mmol/L). Adipose expression of IL-23 and inflammatory markers were determined using real-time qRT-PCR; plasma concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and LDL-c were determined using the standard method; and adiponectin levels were measured by enzyme-linked immunosorbent assay (ELISA). Adipose IL-23 transcripts were found to be increased in people with high LDL-c, compared to low LDL-c group (H-LDL-c: 1.63 ± 0.10-Fold; L-LDL-c: 1.27 ± 0.09-Fold; p < 0.01); IL-23 correlated positively with LDL-c (r = 0.471, p < 0.0001). Immunochemistry analysis showed that AT IL-23 protein expression was also elevated in the people with H-LDL-c. IL-23 expression in the high LDL-c group was associated with multiple adipose inflammatory biomarkers (p ≤ 0.05), including macrophage markers (CD11c, CD68, CD86, CD127), TLRs (TLR8, TLR10), IRF3, pro-inflammatory cytokines (TNF-α, IL-12, IL-18), and chemokines (CXCL8, CCL3, CCL5, CCL15, CCL20). Notably, in this cohort, IL-23 expression correlated inversely with plasma adiponectin. In conclusion, adipose IL-23 may be an inflammatory biomarker for disease progression in people with high LDL-c.


Assuntos
Hiperlipidemias , Subunidade p19 da Interleucina-23/metabolismo , Síndrome Metabólica , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Colesterol/metabolismo , HDL-Colesterol , LDL-Colesterol/metabolismo , Estudos Transversais , Citocinas/metabolismo , Humanos , Hiperlipidemias/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-23/metabolismo , Síndrome Metabólica/metabolismo , Receptor 8 Toll-Like/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
J Pers Med ; 12(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36294864

RESUMO

Following surgery, healing within the oral cavity occurs in a hostile environment, and proper oral care and hygiene are required to accelerate recovery. The aim of the current study is to investigate and compare the bioreactivity characteristics of mouthwashes based on either chlorhexidine (CHX) or a novel bone bioactive liquid (BBL) in terms of oral healing within seven days application post-surgery. A randomized, double blind clinical trial was conducted in 81 patients, wherein the mouthwashes were applied twice a day for a period of 7 days. The visual analog scale (VAS) protocol was applied to determine pain index scores. Early wound healing index (EHI) score was determined for evaluating oral cavity healing progress. No adverse effects were observed using the mouthwashes, but CHX application resulted in stained teeth. Applications of both CHX and BBL were sufficient to reduce pain over a period of 7 days. However, the BBL group demonstrated a statistically significant reduction in VAS scores starting on day 4. The EHI scores were significantly higher in the BBL group compared with the CHX group, independent of tooth location. No differences in either VAS or EHI scores due to gender were observed. Compared with the commercially available CHX mouthwash, application of the BBL mouthwash reduced pain and accelerated oral cavity healing to a greater extent, suggesting it effectively improves the oral cavity microenvironment at the wound site in mediating soft tissue regeneration.

17.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139454

RESUMO

In obesity, macrophage activation and infiltration in adipose tissue (AT) underlie chronic low-grade inflammation-induced insulin resistance. Although dectin-1 is primarily a pathogen recognition receptor and innate immune response modulator, its role in metabolic syndromes remains to be clarified. This study aimed to investigate the dectin-1 gene expression in subcutaneous AT in the context of obesity and associated inflammatory markers. Subcutaneous AT biopsies were collected from 59 nondiabetic (lean/overweight/obese) individuals. AT gene expression levels of dectin-1 and inflammatory markers were determined via real-time reverse transcriptase-quantitative polymerase chain reaction. Dectin-1 protein expression was assessed using immunohistochemistry. Plasma lipid profiles were measured by ELISA. AT dectin-1 transcripts and proteins were significantly elevated in obese as compared to lean individuals. AT dectin-1 transcripts correlated positively with body mass index and fat percentage (r ≥ 0.340, p ≤ 0.017). AT dectin-1 RNA levels correlated positively with clinical parameters, including plasma C-reactive protein and CCL5/RANTES, but negatively with that of adiponectin. The expression of dectin-1 transcripts was associated with that of various proinflammatory cytokines, chemokines, and their cognate receptors (r ≥ 0.300, p ≤ 0.05), but not with anti-inflammatory markers. Dectin-1 and members of the TLR signaling cascade were found to be significantly associated, suggesting an interplay between the two pathways. Dectin-1 expression was correlated with monocyte/macrophage markers, including CD16, CD68, CD86, and CD163, suggesting its monocytes/macrophage association in an adipose inflammatory microenvironment. Dectin-1 expression was independently predicted by CCR5, CCL20, TLR2, and MyD88. In conclusion, dectin-1 may be regarded as an AT biomarker of metabolic inflammation in obesity.


Assuntos
Adiponectina , Quimiocina CCL5 , Lectinas Tipo C , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/patologia , Lectinas Tipo C/metabolismo , Lipídeos , Fator 88 de Diferenciação Mieloide/metabolismo , Obesidade/metabolismo , RNA/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Receptor 2 Toll-Like/metabolismo
18.
J Inflamm Res ; 15: 4291-4302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923906

RESUMO

Background: Overexpression of CCL2 (MCP-1) has been implicated in pathogenesis of metabolic conditions, such as obesity and T2D. However, the mechanisms leading to increased CCL2 expression in obesity are not fully understood. Since both IFN-γ and LPS levels are found to be elevated in obesity and shown to be involved in the regulation of metabolic inflammation and insulin resistance, we investigated whether these two agents could synergistically trigger the expression of CCL2 in obesity. Methods: Monocytes (Human monocytic THP-1 cells) were stimulated with IFN-γ and LPS. CCL2 gene expression was determined by real-time RT-PCR. CCL2 protein was determined by ELISA. Signaling pathways were identified by using epigenetic inhibitors and STAT1 siRNA. Acetylation of H3K27 was analyzed by Western blotting. The acetylation level of histone H3K27 in the transcriptional initiation region of CCL2 gene was determined by ChIP-qPCR. Results: Our results show that the co-incubation of THP-1 monocytes with IFN-γ and LPS significantly enhanced the expression of CCL2, compared to treatment with IFN-γ or LPS alone. Similar results were obtained using primary monocytes and macrophages. Interestingly, IFN-γ priming was found to be more effective than LPS priming in inducing synergistic expression of CCL2. Moreover, STAT1 deficiency significantly suppressed this synergy for CCL2 expression. Mechanistically, we showed that IFN-γ priming induced acetylation of lysine 27 on histone 3 (H3K27ac) in THP-1 cells. Chromatin immunoprecipitation (ChIP) assay followed by qRT-PCR revealed increased H3K27ac at the CCL2 promoter proximal region, resulting in stabilized gene expression. Furthermore, inhibition of histone acetylation with anacardic acid suppressed this synergistic response, whereas trichostatin A (TSA) could substitute IFN-γ in this synergy. Conclusion: Our findings suggest that IFN-γ, in combination with LPS, has the potential to augment inflammation via the H3K27ac-mediated induction of CCL2 in monocytic cells in the setting of obesity.

19.
Stem Cells Int ; 2021: 5212852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795766

RESUMO

Liver diseases are major causes of morbidity and mortality. Dental pulp pluripotent-like stem cells (DPPSCs) are of a considerable promise in tissue engineering and regenerative medicine as a new source of tissue-specific cells; therefore, this study is aimed at demonstrating their ability to generate functional hepatocyte-like cells in vitro. Cells were differentiated on a collagen scaffold in serum-free media supplemented with growth factors and cytokines to recapitulate liver development. At day 5, the differentiated DPPSC cells expressed the endodermal markers FOXA1 and FOXA2. Then, the cells were derived into the hepatic lineage generating hepatocyte-like cells. In addition to the associated morphological changes, the cells expressed the hepatic genes HNF6 and AFP. The terminally differentiated hepatocyte-like cells expressed the liver functional proteins albumin and CYP3A4. In this study, we report an efficient serum-free protocol to differentiate DPPSCs into functional hepatocyte-like cells. Our approach promotes the use of DPPSCs as a new source of adult stem cells for prospective use in liver regenerative medicine.

20.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831450

RESUMO

IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to be explored. Since IL-1ß and TNFα are increased in obese adipose tissue and promote inflammation, we investigated whether cooperation between IL-1ß and TNFα influences the production of IL-6. Our data show that IL-1ß and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes. Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although adipocytes isolated from lean and obese adipose tissues showed similar responses for production of IL-6 when incubated with IL-1ß/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue. TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1ß, and was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1ß treatments mediated C/EBPß binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14 acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6 production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA) resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes with IL-1ß and TNFα. In conclusion, our results show that there is an additive interaction between IL-1ß and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1ß, TNFα, and IL-6 in settings such as obesity.


Assuntos
Adipócitos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Interleucina-1beta/farmacologia , Interleucina-6/genética , Lisina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Acetilação , Adipócitos/efeitos dos fármacos , Animais , Sequência de Bases , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Interleucina-6/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...